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Abstract 

It is shown that the characteristic polynomial of matrices over a Lie nilpotent ring introduced 
recently by Szigeti is invariant with respect to the conjugation action of the general linear group. 
Explicit generators of the corresponding algebra of invariants in the case of 2 x 2 matrices over 
an algebra over a field of characteristic zero satisfying the identity [[n, r],z] = 0 are described. 
In this case the coefficients of the characteristic polynomial are expressed by traces of powers 
of the matrix, yielding a compact form of the Cayley-Hamilton equation of 2 x 2 matrices over 
the Grassmann algebra. @I998 Elsevier Science B.V. All rights reserved. 
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1. Noncommutative Cayley-Hamilton theorem related to invariant theory 

Let Z(Xij) = Z(X, 1 1 5 i,j 5 n) be the free associative algebra over the ring of inte- 

gers. We think of the variables as entries of a generic matrix X = (Xi,). In [lo] Szigeti 

constructed for any m E N the mth right characteristic polynomial 

;(‘“‘(t)=&+f: l;(X,,,...,X,,)td--iE(xij)[t] 
i=l 

of X (t is a commuting indeterminate over H(xii)). The degree d of this polynomial 

equals to n? We shall recall the exact construction below. 
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Let A = (aij) be any n x n matrix over a ring R. We may substitute xii by aij 

(1 <i, j <n) and get the mth right characteristic polynomial 

x~‘(t)=t~+k fi(all,...,a,,)td-‘ER[t] 
i=l 

of A. Define the Lie brackets [.ri, . . . ,xr] recursively by 

[x1,x21 =x1x2 -x2x1, 

[Xl ,...,~,+~]=[~~~,...,x,],x,+~] for ~23. 

The main result of [lo] is that if R satisfies the identity [xi,. . . ,xm+l] = 0, or in other 

words, if R is Lie nilpotent of index m, and A is an n x n matrix over R, then the left 

substitution of A into its mth right characteristic polynomial is zero, that is, 

Ad + f: Ad-ifi(all,...,a,,)=OER”X”. 

i=l 

Note that the powers of A do not commute with the coefficients fi(ai 1,. . . , a,,,,), so 
it is important to take the left substitution here. There is an analogous construction 

of the mth left characteristic polynomial, and the right substitution of an n x n matrix 

over a Lie nilpotent ring of nilpotency index m into its left characteristic polynomial 

is also zero. 

In the sequel we assume that R is an algebra over a field K of characteristic zero. The 

general linear group Gl, = GI,(K) acts on R” ’ * by conjugation. It is natural to expect 

the characteristic polynomial to be invariant with respect to these automorphisms of 

R” ’ ‘, so we slightly modify the construction of the characteristic polynomial from [lo]. 

Consider the natural homomorphism 

onto the commutative polynomial algebra. The map 

1 
y1...yr+- 

r! c YNl) . . . Yn(r) 
nESym(r) 

from the set of monomials of K[xv] to K(xii) extends linearly to a map 

0 : K[xij] +K(.xQ), 

and clearly we have 4 o B = idK[+]. The symmetric group of degree r acts on the right 

on the degree Y homogeneous component of K(xij) by place permutation, namely, 

ZI . . . z,. 71 = Z,(I j . . zncr) for any monomial z1 . . .z, E K(xij) and rt E Sym(r). Obviously, 

for any f E K[xij] the polynomial cr( f) is the unique symmetric preimage of f, that 

is, a(f) is the unique element in @l(f) whose degree r homogeneous component is 

fixed by Sym(r) for all r. 
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The maps C$ and r~ extend naturally to maps between K(xq)” x ’ and K[xijln ’ “, 

and we denote these maps by the same symbols 4,~. We define the adjoint of X as 

follows: 

ad&U = o(adj(W))), 

where adj(&X)) denotes the ordinary adjoint of the matrix 4(X) with commuting 

entries. (The (i, j) entry of adj(&X)) is the determinant of the (n - 1) x (n - 1) minor 

of $(X) obtained by removing the jth row and the ith column, multiplied by (- 1 )‘+j. ) 

The adjoint of an arbitrary matrix (aij) = A E R ’ x n is obtained by substituting xij --+ a;j 

(1 5 i, j 5 n) in each element of adj(X), so 

adj(A)==adj(X)jx+,.I. 

Define Xo,Xi, . . . ,X, recursively by X0 =X = (xii) E K(.xij)” ’ n, Xi = adj(&), and 

Xi+ 1 = adj(XX, . ..Xi) for i= l,... ,m - 1. The mth right determinant of X is defined 

by 

de&“‘(X) = k Tr(xX, . . .X,), 

where Tr(-) denotes the usual trace function, that is, the sum of the diagonal entries 

of the matrix. By the results of [lo] we have that 

Xx, . . X = detCm)(X)I + B, * m 

where I denotes the n x n unit matrix, each element of B is contained in the mth Lie 

bracket ideal of K&xii) (i.e., the ideal generated by elements of the form [ur,. . .,u,,,+~], 

u, E K (xi,)) and the trace of B equals to zero. If we add the ( 1,l) entry of B to 

our mth right determinant, then we get the determinant from [lo]. In particular, these 

determinants are the same modulo the mth Lie bracket ideal, and all the results of [lo] 

remain true with the same proof for our determinant. 

The mth right determinant of an arbitrary matrix A E Rnx” is defined by 

det’“‘(A) = det'"'(X)lx, A. 

Now the mth characteristic polynomial can be defined as in the commutative case: 

x’“‘( t ) = det’“‘( tl - X) 2 

where t is a commuting indeterminate over K(Xij), and 

Xj4m)(t) = all _A = det’“‘(tZ - A) 

for an arbitrary matrix A. For any g E GI, the map 

xij + “the (i,j) entry of gXg_‘” 

induces a linear transformation on SpanK{xii / 1 < i, j < n}. This representation of GI, 

extends diagonally to an action on K(Xij) = K(xij 1 1 5 i, j < n). 
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Theorem 1.1. The coeficients of the mth characteristic polynomial are invariant un- 

der the action of GI, by conjugation, that is, 

f&l,... ,Xnn) E K(x~jp = {f EK(xii) 1g.f =f VgEGl,) 

for k= l,...,d. 

Proof. First we claim that 

adj(gXg-‘) = g.adj(X).g-’ 

for any g E GE,. Since the homomorphism 4 : K(_x~)~ ’ ’ + K[x~]” ’ a commutes with 

the conjugation action of Gl,, and conjugation commutes with forming the adjoint in the 

commutative case, and the natural homomorphism K(xij) --+K[xij] is Gl,z equivariant 

(where G1,2 acts on both algebras by linear substitution of the variables), we have the 

chain of equalities 

f#@.adj(X)-g-r ) = g&adj(X))g-l = g.adj(cb(X)).g-’ 

= a&(gW)g-‘) = ~(adj(x))l~(,,,,~(,),-I 

= 4(adj(X)I, + sxg-l ) = 9(adjWg-’ )), 

showing that g .adj(X) . g-’ and adj(gXg-l ) have the same images under 4. On the 

other hand, each entry of both of them is homogeneous of degree n - 1, so it suffices 

to show that each entry of both of them is fixed by the action of Sym(n - 1) by 

place permutation. This is true for the entries of a&Y) by definition, and the entries 

of g.adj(X).g-’ are linear combinations of the entries of adj(X). The action of GZ, 

restricted to the homogeneous component of degree n - 1 of K (Xij) commutes with the 

action of Sym(n - 1). Hence the entries of adj(X)lx __sxg-~ are also symmetric, and 

the claim follows. 

Therefore the chain of equalities 

adj(~)I~+,~,-~ = (adj(~)I~+g~g-~)I~+,4 =diWg-‘>l~-.4 

=(g.adj(X)~g-‘)Ix-,4 =s(a4(~)l~+,4k-1 

shows that 

adj(gAg-‘) = g.adj(A).g-’ 

for any matrix A. Hence Xi]x _ sxg-l = gXig_‘, and since the trace is invariant with 

respect to conjugation, we have that 

det(m)(gXg-‘)=lTr(~~l . ..X.g-‘)=~Tr(XY~ . ..X.)=det(“)(X) 
n n 

for any g E GZ,. Obviously, this implies that 

detCm)(gAgV1) = de&“)(A) 
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for an arbitrary matrix A. Finally, we conclude that 

x;;_,(t) = det’“‘(tZ - gxg-’ ) = deP’(g(tZ - X)g_‘) 

= det’“‘(tZ - X) = pq t) ? 

or in other words, fk(Xt1)...) Xn,)EK(Xij)G’n for k= l,.,., n”. 0 

The mth characteristic polynomial has relevance for matrices over K-algebras that 

are Lie nilpotent of index m, because in this case we have a Cayley-Hamilton theorem. 

Working with matrices whose entries are taken from a K-algebra satisfying the iden- 

tity [~t,...,x~+l - ] - 0 it is more natural to consider the coefficients of the characteristic 

polynomial of a generic matrix as elements of the relatively free algebra defined by 

this identity. More precisely, let Z be the ideal of K(xij) generated by [~a, ~1,. . . , u,] 

as uk vary in K(xij) (i.e., Z is the T-ideal generated by the mth Lie bracket). We have 

the natural onto homomorphism 

K(Xij) * K(Xij)/Z. 

We do not want to introduce new letters to denote the image of xii. From now on 

we think of Xii (1 < i, j 5 n) as generators of the relatively free algebra K(xij)/Z, and 

the entries of X, a&Y) and the coefficients of xcrn)(t) are the corresponding elements 

in K(Xij)/Z. For example, from now on we consider the mth characteristic polynomial 

x’“‘(t) as an element of (K(xij)/Z)[t]. A s we noted earlier x(“)(t) E (K(xij)/Z)[t] is the 

same as the corresponding characteristic polynomial in [lo]. The action of GZ, on the 

free algebra K(Xii) induces an action on K (xij)/Z, because Z is stable with respect to 

the action of GZ,. Note that by linear reductivity of Gl, the natural homomorphism 

K(xi,) AK(xiZ)/Z restricted to the corresponding algebras of invariants is also surjec- 

tive. Theorem 1 .l has the following immediate corollary. 

Corollary 1.2. The coefJicients of the mth characteristic polynomial lie in 
(K (Xij)/Z)G’n. 

Remark. In the commutative case the coefficients of the characteristic polynomial gen- 

erate K[xij] . ‘L This fact motivates the question whether an analogous result holds for 

(K(xij)/Z) . G1n It was shown in [4] that RG is a finitely generated algebra for any rational 

action of a reductive algebraic group G on a finitely generated algebra R, if R satisfies 

the identity [xl,. . . ,x,+1 ] = 0. Hence the algebra (K (Xij)/Z)“n is at least finitely gen- 

erated. The computation in the next section is an illustrating example for the theory 

developed in [4]. 
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2. Explicit basic invariants in the case n = m = 2 

The mth characteristic polynomial was invented in [lo] in order to study the poly- 

nomial identities of matrices over the infinite dimensional Grassmann algebra 

E=K(v~,v~,... 1 ViVj + VjVi=O Y&j). 

Identities of E” x n deserve attention because of their distinguished role in Kemer’s 

classification of T-ideals (see [S]). The algebra E is Lie nilpotent of index 2, moreover, 

its T-ideal of identities is generated by [x1,x2,x3] (cf. [9]). 

Our aim here is to find explicit generators of (K(x~)/Z)~‘. in the simplest noncom- 

mutative case, namely when n = 2 and 2 = Z(E) is the T-ideal of identities of E (i.e., 

Z is the ideal of K(xv) generated by the elements [u~,u~,z+] as Uk vary in K(xij)). 

We note that in the commutative case K[xillGln is generated by traces of powers of X, 

and it is sufficient to take Z%(X), 2+(X2), . . . , R-(X”), since Tr(JP+r) can be expressed 

by traces of lower powers using the Cayley-Hamilton theorem. We will show that the 

situation for (K(x~~,x~~,x~~,x~~)/Z(E))~‘~ is completely analogous. 

Let us mention that a related problem is studied in [2]. Take generic matrices 

Y,=(yt’), Z,.=(,$‘) (r=1,2 ,... ), where F=K[y$),zl,‘)I 1 <i,j<n,r=1,2 ,... ] is a 

free supercommutative superalgebra. The algebra K( Y,, Z,. 1 Y = 1,2,. . .) is a universal 

algebra in the variety of superalgebras defined by E” ’ *. The conjugation action of 

GZ, on matrices induces an action on F, and it is shown in [2] that FG’. is the trace 

algebra (what is called supertace algebra there) of K( Y,, Zr). 

For simplicity let us introduce the notation 

Another fact we do not use but seems worth mentioning that it is proved in [l l] 

that any algebra satisfying the identity [x, y,z] = 0 can be embedded into a supercom- 

mutative superalgebra. This applies for the algebra R. 

The results of [4] imply that the graded algebra RG12 has a rational Hilbert series, 

and now we compute it explicitly. 

Lemma 2.1. The Hilbert series of RG12 is 

1 + 2t3 + t4 

Proof. It is known that the four variable Hilbert series of R is 

H(Rh,t2,f3,t4)= 
1+C , 1~<~<4 tiq + tlt2f3t4 

n:=,cl -tk) 

(see for example [5]). The subgroup SZ2 of Gl2 has the same algebra of invariants for 

this action, so we may apply Weyl’s Unitarian trick. The special Unitarian group SU2 

is a maximal compact subgroup of SET, and it has the same algebra of invariants. So 



M. Domokosl Journal of Pure and Applied Algebra 133 (1998) 69-81 75 

similar to the free algebra case treated in [l], a noncommutative Molien-Weyl formula 

is valid: 

H(RS12; t) = 
s 

H(R;pl(g)t,pz(g)t,p3(g)t,p4(g)t)d~1 for ItI < 1, 
su2 

where p a normalized Haar measure and pr(g), pz(g), ps(g), p4(g) are the eigenvalues 

of the image of g E SU2 in the given four dimensional representation on SpanK{xrr,xr2, 

x21 ,x22}. (Analogous Molien-Weyl formula for the Hilbert series of the algebra of 

invariants of a finite group acting on a relatively free algebra can be found in [6].) 

The subgroup 

is a maximal torus in SU2, and the eigenvalues of the image of 

in the given four-dimensional representation are 1 ,z2, ze2, 1. The Haar measure on T 

is (1/2rri)z-’ dz, the Weyl group of SU2 has two elements, and the only positive root 

8 : T + C is given by 

e((Zg zY!,)) =2. 

Hence by the Weyl integration formula the above expression is equal to the following 

complex integral over the unit circle: 

1 

s 

(2 - 22 -z- 2>(1 +2t2(1 +z2+2-2)+t4) 1 

-i I-I= 1 (1 - t)2( 1 - tz2)( 1 - tz-2) 2Tciz 

_I& (,t(<l) 

The above integral can be written as a sum 

t2 
(1 + t4v + (1 _ t)2(Bl f B-11, 

where 

Bj= & 
s 

(1 -z2’)(1 +zZ+z-2)dz (“.. * 1) 

Jz,=l z(1 - tz2)(1 - tz-2) 

Observe that by the commutative Molien-Weyl formula A is just the Hilbert series 

of the algebra of invariants K[x~~,x~~,x~~,x~~]~‘~, and it is well known that this latter 

algebra is generated by the trace and the determinant, so 

1 

A= (1 - t)(1 - 9)’ 
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The substitution z + z- ’ shows that Br = B-1, and one can evaluate BI using the 

residue theorem. For any 0 < ]tJ < 1 the function 

P(z) (1 -2)(z4+z2+ I) 
-x.z 
Q(Z) z( 1 - tz2)(z2 - t) 

has three poles in the unit circle at 0 and +fi; hence by the residue theorem 

B, =Resp(‘)l 
Q(Z) z=o 

+R,# =J +~,p(z)l 
zz f Q(z) z=-pi’ 

and since the multiplicity of the roots of Q(z) is one, for any root v] of Q(Z) we have 

Res - P(q) 
Q(z) -‘=rl Q'(r) 

(where Q’ is the derivative of Q, ) thus we get 

B I 
=r++t)(t2+t+l)_ t 

-t da1 - G)2Ji 1 +t’ 

and the claim follows. (Let us note that in the case of rational representations of Sl,, a 

purely algebraic approach to the Molien-Weyl formula, the Weyl integration formula 

and the residue calculus is given in [l]. It is also possible to compute the above Hilbert 

series without referring to integrals, by computing the irreducible decomposition of the 

representations of Sl:! on the homogeneous components of R.) 0 

Theorem 2.2. RGi2 is generated by P(X), Z’r(X2), and 2+(X3). 

Proof. For a survey on computational techniques in relatively free algebras we refer 

to [5]. An account on the structure of the relatively free algebras defined by Z(E) can 

be found also in [3]. 

Denote by C the commutator ideal of R, that is, we have 

W g Kb11~12,~21,~221. 

C’/C’+ has a natural R/C-module structure for i = 0, 1, . . . . Since C3 = 0, it suffices 

to find elements in RGlz such that their images generate (R/~IZ)“~, and (C/C2)G12 and 

(C2)G’Z as an (R/C)‘l 2-module. (See [4] for more general applications of this idea.) 

The traces of powers of X are obviously invariants in the free case, hence Z’r(X’) 
is contained in RGi2 for any i. It is a well known fact that D(X), Tr(X2) generate 

( R/C)G’2. 
It is also easy to understand (C2)Glz. Recall that a polynomial is called proper if 

it is a linear combination of products of long commutators. There is only one proper 

polynomial in C2 up to a scalar multiple, namely 

= [~11,~211[~22,~121 = ~S4(X11,X,2,X21rX22), 
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where 

is the standard polynomial of degree four. Hence C2 is a free R/C-module of rank 

one generated by &(xii,xi2,x21 ,x22). The polynomial S4(xii,xi2,~21,~22) generates a 

one dimensional irreducible G/4-submodule of K(xl 1,x12,x21,x22), where Gl4 acts by 

linear substitution of the variables, and this representation is equivalent with det(-). 

Since the representation of Gl2 on K(xij) given by conjugation of X maps the elements 

of G/Z to determinant 1 elements of G14, we have that S4(xil,x12,~2i,x22) is contained 

in K(xij) ‘12, hence it is clearly contained in RG12. So we have that (C2)‘lz is the free 

(R/C)Gh-submodule of C2 generated by &(xil,x12,~2i,x22). 

The only piece left is CjC2. It is a free R/C-module generated by 

Al = [X2l,~l21, h2 = b22,Xlll, A3 = [Xl2J221, 

A4 = [x21,x113, A5 = [x12,x111, h6 = [x21,x221. 

Hence its multigraded Hilbert series is 

H(CIC2;t,,t2,wd= Cl <i<j<4 titi 
rI;=,u - tk) . 

2 We can compute the Hilbert series of (C/C ) ‘I2 by the same method as in Lemma 2.1, 

and we get that 

H((C/C2)G'2; t) = 2t3 
(1 - t)(l - 9)’ 

The Hilbert series shows that we have to find two invariants of degree 3 whose images 

generate a free (R/C)G’2-submodule of C/C=. One of them is obviously the commutator 

91 = P-(X2), ww 

We note that the results of [3] imply that Tr(X), E-(X2) generate a subalgebra of R 

which is isomorphic to the factor algebra of the free algebra of rank two modulo the 

T-ideal of identities of E. In particular, gi is nonzero, and so it is not even contained 

in C2. To find the other recall that Tr(X3) can be expressed by Tr(X) and T&Y’) 
modulo the commutator ideal, using the commutative Cayley-Hamilton theorem. Thus 

we get that 

g2=TY(Xs)-; Tr(X)Tr(P) + ;zP(X) 

is also contained in C. Denote by gi the images of gi in C/C2. We claim that 

S, E c R1C.h 
k=2 
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and 

6 

k=2 

To show the claim consider the K-linear basis 

{x$x$x$c$h~ 1 i = 1 ,...,6, B=o,l, @.1,~2,~3,~4>0} 

of R/C2. We order the variables x11 <x22 <x12 <x21. For an arbitrary monomial Yl . . . y, 

ER/C~ denote by r(yr . . . yr) the monomial with the same multidegree in which the 

variables appear in nondecreasing order. The normal form of an arbitrary monomial 

Yl.‘. ys E R/C2 with respect to the above basis is 

Yl... ys = T(Yl . ..Ys)+ C z(Yl.*.Yi-lYi+l...Yj-lYj+l...Ys)lYi,Yjl~ 

i(ia).b 

Hence to compute the coefficient of hl = [x21,x12] in jr we have to consider the mono- 

mials of [73(X2), D(X)] in which x12, x21 appear in the reverse order. D(X) does not 

contain these variables, but D(X2) =xfr +xi2 +x12x21 +x21x12 contains the term ~21x12. 

So the coefficient of hl in the normal form of S, is the same as in [x21x12, P(X)], 

and the normal form of this latter polynomial is x21h5 +x12h4 +x21hs +x12h6. We can 

determine the coefficient of hl in the normal form of s;! similarly. It is easy to see that 

92 =x21x12x22 +x21x11x12 + ~22x21~12 - i WWx2lx12 

+ terms in which x21 and x12 do not appear in this order. 

Hence the coefficient of x22[x2r,x12] in j2 is 1 + 1 - ; = i and the coefficient of 

xlr[x2r,xr2] is 1 - i = -i, as we claimed. Now since C/C2 is a free R/C-module 

generated by hl, . . . , hg, and the coefficient of hl in Jl is zero while in J2 it is nonzero, 

we have that J, and d2 generate a free R/C-submodule in C/C2, implying that they 

generate a free (R/C)GiZ-submodule in (C/C 2 G’2. The Hilbert series of (C/C2)G’z shows ) 

that these are all the invariants in C/C2. 

TO finish the proof we have to express S4(~11,~12,~21,~22) by P(X), 73-(X2), and 

Tr(X3). Let us observe that since commutators are central in R and g2 is contained in 

C, we have that [g2, D(X)] is contained in C2. On the other hand, it is of degree four. 

Hence it must be a scalar multiple of $(x1 1,x12,x21,x22). To determine the scalar let 

us substitute 

X-+ 
Vl v2 ( > = 
v3 v4 

K 

where ~l,u2,03,~4 are among the generators of E, that is, ViUj + UjUi =0 (1 <i, j 54). 
One can compute that Tr( V) = v1 + v4, Tr( V2) = 0, and Tr( V3) = 3(vlV2V3 - v2v3v4), 

hence 

[Tr(V3) - iTr(V)Tr(V2) + +Tr3(V),Tr(V)]= 12VIV2V3V4. 
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Since &(oi, ~2, v3, ~4) = 2411, v2v3u4, we have the equality 

~4(~,1,X12,~21,X22) = [2Tr(x3) - 3T4X)Tr(X2), Tr(X)]. 0 

3. The Cayley-Hamilton theorem for 2 x 2 matrices over E 

We keep the notation R =K(x,~,x,~,x~,,x~~)/Z(~). In view of Corollary 1.2 and 
Theorem 2.2 we know that the coefficients of I E R[t] can be expressed by Tr(X), 
Tr(X2), and Tr(X3), so let us look at the characteristic polynomial I of 

more closely. Recall that 

and direct computation shows that X7ii = al + B, where 

a = 3(x11 0 x22 - x12 0 x21) = z( l Tr2(X) - n-(X2)) 

(we use the notation x o y =xy + yx) and 

B= 
;(hx221 - [x12,x211) b12,~lll 

\ [x21,x221 

It is easy to see that 

X2 = adj(XXi ) = adj( al 

and 

. -;(bll,x221 - b12J211) / 

+B)=aZ-B, 

XXlX2 = a21 - B2, 

implying that 

dd2’(X) = #r2(X) - Tr(x2))2 - $([ x11,x221 - h2,x211)2 - b12,~111[~21?~221 

= $((Tr2(x> - Tr(x2)j2 + ~4(~11,~12,~21,~22)). 

By definition the characteristic polynomial is 

x@)(t) = df?t’2’(X - tZ) 

= $((DJ(X - tr) - Tr((X - t1)2))2 + S4(Xl1 - t,x12,x21,x22 - t) 

= t4 - 2Tr(X)t3 + (2Tr2(X) - Tr(P))t2 

+( $ Tr(X) 0 D(P) - Tr3(X))t + dd2’(X). 
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Using the expression for ,!$(xtl,x12,~2t,x22) as a function of T&Y’) (i = 1,2,3) ob- 

tained in the proof of Theorem 2.2 we get that 

detf2’(X) = $(Tr4(X) + Tr2(X2) + $“2(x)Tr(x2) 

-iTr(X2)Tr2(X) + 2[Tr(X3), P(X)]). 

A similar computation yields the second left determinant of X, and the theorem of 

Szigeti from [lo] obtains the following nice compact form in this special case: 

Theorem 3.1. For any 2 x 2 matrix A over a K-algebra S satisfying the identity 

[x~,xz,x~] = 0 we have that 

A4 - 2A3Tr(A) + A2(27’r2(A) - Tr(A2)) + A( ii?-(A) o Tr(A2) - Tr3(A)) 

+i(Tr4(A) + Tr’(A2) + iTr2(A)Tr(A2) - $Tr(A2)Tr2(A) + 2[Tr(A3), Tr(A)]).I 

A4 - 2Tr(A)A3 + (2Tr2(A) - Tr(A2))A2 + (k??-(A) o Tr(A2) - Tr3(A))A 

+a(Tr4(A) + Tr2(A2) - iTr2(A)Tr(A2) + $Tr(A2)Tr2(A) - 2[Tr(A3), Z’r(A)]).I 

are equal to zero in S2 X2. 

Remark. For comparison we mention that certain Cayley-Hamilton equations for the 

matrix superalgebras are defined and studied in [7]. 

Corollary 3.2. For any 2 x 2 matrix A over a K-algebra S satisfying the identity 
[x1,x2,x3] = 0 we have that if P(A) = Tr(A*) = 0, then A4 = 0. 

Proof. Observe that in the Cayley-Hamilton equation of Theorem 3.1 Tr(A3) does not 

appear in the coefficient of A, it appears only in the constant term in the commutator 

[Tr(A3), Z?(A)]. 0 

Taking traces of both sides in any of the equalities of Theorem 3.1 we get the 

following formula: 

Corollary 3.3. In RGil we have the equality 

Tr(X4) = Tr(X3) 0 P(X) + + Tr2(X2) + $ Tr4(X) - 2Tr(X)Tr(X2)Tr(X). 

Remark. Our results about RGi2 are very similar to those about K[xij]“‘: the algebra 

of invariants is generated by powers of traces of X, and it suffices to take powers of 

order up to 3, because Tr(X4), T&Y’), . . . can be expressed by traces of powers of 

lower degree using the noncommutative Cayley-Hamilton theorem. 
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However, contrary to the commutative case, the coefficients of the characteristic 

polynomial do not generate RG’l, as one can see it from the explicit form of the 

coefficients of the characteristic polynomial. 

Conversely, we show that if for some T-ideal I the algebra (K(xij)/l)G’n is gener- 

ated by traces of powers of X, then K(xij)/I satisfies a polynomial identity of degree 

three. Indeed, consider the invariant Tr(X3). It contains the monomial XIIXIZX~~. Now 

exchange the first and the second variables in each monomial of Tr(X3). Since the 

action of Sym(3) by place permutation on the degree three homogeneous polynomials 

in K(xv) commutes with the action of Gl,, the resulting polynomial is also an invari- 

ant. On the other hand, it contains the monomial ~12x11~21. It is obvious that products 

of traces of powers of X do not contain this monomial, so if this invariant can be 

expressed by traces of powers of X, then I must contain a degree three polynomial. 

(We note that if a unitary algebra satisfies a degree 3 identity, then it satisfies the 

identity [xI,x~,x~] = 0.) 

The question whether (K(~ij)/Z(l?))~‘~ is generated by traces of powers of X remains 

open for n > 3. 

Acknowledgements 

I thank the anonymous referee and J. Szigeti for helpful comments on the manuscript 

and for providing some references, and D. Leites for sending me [l 11. This research 

was supported by Hungarian National Foundation for Scientific Research grant no. 

F023436. 

[l] G. Almkvist, W. Dicks, E. Formanek, Hilbert series of fixed free algebras and noncommutative classical 

invariant theory, J. Algebra 93 (1985) 189-214. 

[2] A. Berele, Supertraces and matrices over the Grassmann algebras, Adv. Math. 108 (1994) 77-90. 
[3] M. Domokos, Relatively free invariant algebras of finite reflection groups, Trans. Amer. Math. Sot. 348 

(1996) 2217-2234. 

[4] M. Domokos, V. Drensky A Hilbert-Nagata theorem in noncommutative invariant theory, Trans. Amer. 

Math. Sot., to appear. 

[5] V. Drensky, Computational techniques for PI-algebras, in: Topics in Algebra, Banach Center Publi- 

cations, vol. 26, Part 1, PWN-Polish Scientific Publishers, Warsaw, 1990, pp. 17-44. 
[6] E. Formanek, Noncommutative invariant theory, in: S. Montgomery (Ed.), Group Actions on Rings, 

Contemporary Mathematics, vol. 43, Amer. Math. Sot.. Providence, RI, 1985. pp. 87-119. 
[7] 1. Kantor. I. Trishin, On a concept of determinant in the super case, Comm. Algebra 22 (1994) 

3679-3739. 
[S] A.R. Kemer, Varieties and Zz-graded algebras, Russian, Izv. Akad. Nauk SSSR 48 (1984) 1042-1059. 

[9] D. Krakowsky, A. Regev, The polynomial identities of the Grassmann algebra, Trans. Amer. Math. 

Sot. 181 (1973) 429-438. 
[lo] J. Szigeti, Cayley-Hamilton theorem for matrices over Lie nilpotent rings, Proc. Amer. Math. Sot., 125 

(1997) 2245-2254. 
[l I] I.B. Volichenko. Nonhomogeneous subalgebras of supercommutative algebras, in: D. Leites (Ed.), 

Seminar on Supermanifolds, Reports of Dept. of Math., no. 17, Stockholm Univ.. No. l-34, 

1987-92. 


